IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Comparative spring distribution of zooplankton in three macrotidal European estuaries
Sautour, B.; Castel, J. (1995). Comparative spring distribution of zooplankton in three macrotidal European estuaries, in: Heip, C.H.R. et al. (Ed.) Major biological processes in European tidal estuaries. Developments in Hydrobiology, 110: pp. 139-151
In: Heip, C.H.R.; Herman, P.M.J. (Ed.) (1995). Major biological processes in European tidal estuaries. Reprinted from Hydrobiologia, vol. 311(1-3). Developments in Hydrobiology, 110. Kluwer Academic: Dordrecht, The Netherlands. ISBN 0-7923-3699-2. VII, 266 pp., more
In: Dumont, H.J. (Ed.) Developments in Hydrobiology. Kluwer Academic/Springer: The Hague; London; Boston; Dordrecht. ISSN 0167-8418, more

Also published as
  • Sautour, B.; Castel, J. (1995). Comparative spring distribution of zooplankton in three macrotidal European estuaries. Hydrobiologia 311(1-3): 139-151, more

Available in  Authors 
    VLIZ: Open Repository 141151 [ OMA ]

    Biological production; Comparative studies; Estuaries; Flushing time; Phytoplankton; Salinity gradients; Seasonal variations; Zooplankton; Acartia bifilosa (Giesbrecht, 1881) [WoRMS]; Eurytemora affinis (Poppe, 1880) [WoRMS]; ANE, Ems Estuary [Marine Regions]; ANE, France, Gironde Estuary [Marine Regions]; ANE, Netherlands, Westerschelde [Marine Regions]; Marine; Brackish water

Authors  Top 
  • Sautour, B., more
  • Castel, J.

    The zooplankton of three european estuaries (Ems, Gironde and Westerschelde) was investigated during spring 1992 by means of samples taken along the salinity gradient. The three estuaries are comparable in terms of total area, flushing time and salinity gradient but differ by their level of eutrophication (highest in the Westerschelde), suspended matter concentration (highest in the Gironde) and potential phytoplankton production (highest in the Ems). Copepods and meroplankton dominated the zooplankton in the three estuaries. The dominant copepod species were Eurytemora affinis and Acartia bifilosa. The distribution of E. affinis along the salinity gradient differed between the estuaries. Peaks of abundance were observed at 0 PSU in the Gironde, 6 PSU in the Ems and 9 PSU in the Westerschelde. The downstream shift of the population in the Westerschelde was likely due to anoxic conditions occurring in the oligohaline zone. In the Gironde the downstream distribution of E. affinis was limited by the very high suspended matter concentration found in the maximum turbidity zone. Whatever the estuary, the parameters of the population of E. affinis and maximum abundance values were similar. However, the influence of the better quality of the available food was suggested in the Ems where individual dry weights and egg production were higher than in the two other estuaries. The influence of a good quality of food in the Ems was confirmed by the development of a large population of Acartia bifilosa (as abundant as E. affinis) and highest values of adult individual weights.
    The meroplankton (essentially Polychaete and cirripede larvae) was much more developed in the Ems than in the Westerschelde and Gironde. This was likely due to the large extent of mudflats and hard substrates in the Ems favouring adult settlement and hence the number of larvae locally produced.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors