IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Ecological gradients and relative abundance of native (Mytilus trossulus) and invasive (Mytilus galloprovincialis) blue mussels in the California hybrid zone
Braby, C.E.; Somero, G.N. (2006). Ecological gradients and relative abundance of native (Mytilus trossulus) and invasive (Mytilus galloprovincialis) blue mussels in the California hybrid zone. Mar. Biol. (Berl.) 148(6): 1249-1262
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162, more
Peer reviewed article  

Available in  Authors 

    Mytilus galloprovincialis Lamarck, 1819 [WoRMS]; Mytilus trossulus Gould, 1850 [WoRMS]; Marine

Authors  Top 
  • Braby, C.E.
  • Somero, G.N.

    Marine communities are experiencing unprecedented rates of species homogenization due to the increasing success of invasive species, but little is known about the mechanisms that allow a species to invade and persist in a new habitat. In central California, native (Mytilus trossulus Gould 1850) and invasive (Mytilus galloprovincialis Lamarck 1819) blue mussels and their hybrids co-exist, providing an opportunity to analyze the mechanisms that determine the distributions of these taxa. Spatial and temporal variation in temperature and salinity and the relative frequencies of these mussel taxa were examined between 2000 and 2004 at four sites in San Francisco Bay and four in Monterey Bay, which were chosen for their different positions along inferred estuarine/oceanic gradients in the hybrid zone. Mussels were genetically identified as the parent species or hybrids by amplifying regions of two species-specific loci: the adhesive byssal thread protein (Glu-5′) and the internal transcribed spacer region of ribosomal DNA (ITS 1). The proportion of M. trossulus at the eight hybrid zone sites correlated negatively with average salinity (R 2=0.60) and positively with maximal temperature (R 2≥0.72), a somewhat unexpected result given what is known about the phylogeography of this species. The proportion of M. galloprovincialis showed the opposite pattern. The proportion of hybrids was correlated neither with habitat temperature nor salinity. Genotypes of mussel populations at an additional 13 sites from Coos Bay, Oregon (latitude 43.35°N) to Long Beach, California (latitude 33.72°N), sampled at various intervals between 2000 and 2004, were also determined. This survey confirmed previous reports that the hybrid zone lies between Monterey and the Cape Mendocino region (latitudes 36.63°N–40.5°N). Within Monterey and San Francisco Bays, however, the temporal comparisons (1990s vs. 2000s) revealed abrupt changes in the proportions of the two parent species and their hybrids on annual and decadal time scales. These changes indicate that the blue mussel populations are in a highly dynamic state. The survey also showed that, regardless of habitat, M. trossulus is consistently of smaller average size than either M. galloprovincialis or hybrids.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors