IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Multicomponent ionic diffusion in porewaters: coulombic effects revisited
Boudreau, B.P.; Meysman, F.; Middelburg, J.J. (2004). Multicomponent ionic diffusion in porewaters: coulombic effects revisited. Earth Planet. Sci. Lett. 222(2): 653- 666
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 102022 [ OMA ]

    Diagenesis; Diffusion; Pore water; Marine

Authors  Top 
  • Boudreau, B.P.
  • Meysman, F., more
  • Middelburg, J.J., more

    The diffusion of an ion in porewaters cannot occur independently of the other ions in solution as a result of Coulombic coupling, as well as from other effects not considered here. Unfortunately, a longstanding disagreement exists about the correct form and meaning of the equations that describe Coulombic coupling in porewaters, i.e., Ben-Yaakov [Am. J. Sci. 281 (1981) 974] vs. Lasaga [Am. J. Sci. 281 (1981) 981]. This paper re-examines this controversy by reformulating the problem starting from fundamental concepts of mass and charge conservation. We show that these antagonistic formulations are both valid and, in fact, equivalent, when the different interpretations of charge balance are resolved. Most of the disagreements between Ben- Yaakov and Lasaga are then shown to result from differing methods of solution, not fundamental disparities in their models. We note, however, that the explanation for the concept of ‘‘stationary’’ gradients of nonreacting ions as given Ben-Yaakov is inaccurate, and such gradients do lead to diffusive fluxes that are counterbalanced by electrochemical migrational fluxes to produce no net flux (excluding advective flux). We further find that the bicarbonate diffusive flux will not balance the diffusional charge flux of sulfate during its reduction if advection is present. This latter imbalance generates compensating fluxes in the other nonreacting ions. We have applied our theory to a simplified case of sulfate reduction in a marine sediment. The results show that nonreacting ions do diffuse and that with normally expected values of porewater advection, the ratio of the bicarbonate to the sulfate flux can be far different than the ideal value of -2.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors