IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

An efficient Eulerian finite element for the shallow water equations
Hanert, E.; Le Roux, D.Y.; Legat, V.; Deleersnijder, E. (2005). An efficient Eulerian finite element for the shallow water equations. Ocean Modelling 10(1-2): 115-136. dx.doi.org/10.1016/j.ocemod.2004.06.006
In: Ocean Modelling. Elsevier: Oxford. ISSN 1463-5003, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 103514 [ OMA ]

Keywords
    Equations; Finite elements; Kriging; Kriging; Planetary waves; Shallow water; Marine
Author keywords
    finite elements; Euleurian; semi-Lagrangian; shallow water equations; Rossby waves; non-conforming linear interpolation; kriging

Project Top | Authors 
  • Second-generation Louvain-la-Neuve Ice-ocean Model, more

Authors  Top 
  • Hanert, E., more
  • Le Roux, D.Y.
  • Legat, V., more
  • Deleersnijder, E., more

Abstract
    The accuracy and efficiency of an Eulerian method is assessed by solving the non-linear shallow water equations and compared with the performances of an existing semi-Lagrangian method. Both methods use a linear non-conforming finite element discretization for velocity and a linear conforming finite element discretization for surface elevation. This finite element pair is known to be computationally efficient and free of pressure modes. The model equations are carefully derived and a comparison is performed by simulating the propagation of slow Rossby waves in the Gulf of Mexico. Simulations show that the Eulerian model performs well and gives results comparable to high order semi-Lagrangian schemes using kriging interpolators.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors