IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

A bioenergetics model for juvenile flounder Platichthys flesus
Stevens, M.; Maes, J.; Ollevier, F.P. (2006). A bioenergetics model for juvenile flounder Platichthys flesus. J. Appl. Ichthyol. 22(1): 79-84.
In: Journal of Applied Ichthyology = Zeitschrift für angewandte Ichthyologie. Blackwell: Berlin. ISSN 0175-8659, more
Peer reviewed article  

Also published as
  • Stevens, M.; Maes, J.; Ollevier, F.P. (2006). A bioenergetics model for juvenile flounder Platichthys flesus, in: Stevens, M. Intertidal and basin-wide habitat use of fishes in the Scheldt estuary = Getij- en bekkengebonden habitatgebruik door vissen in het Schelde-estuarium. pp. 81-92, more

Available in  Authors 
    VLIZ: Open Repository 114523 [ OMA ]

    Feeding; Growth; Platichthys flesus (Linnaeus, 1758) [WoRMS]; ANE, British Isles, Scotland, Grampian, Ythan Estu [Marine Regions]; Marine; Fresh water

Authors  Top 

    Despite the numerous physiological studies on flatfish and their economic and ecologic importance, only a few attempts have been made to construct a bioenergetics model for these species. Here we present the first bioenergetics model for European flounder (Platichthys flesus), using experimentally derived parameter values. We tested model performance using literature derived field-based estimates of food consumption and growth rates of an estuarine flounder population in the Ythan estuary, Scotland. The model was applied to four age-classes of flounder (age 0–3). Sensitivity of model predictions to parameter perturbation was estimated using error analysis. The fit between observed and predicted series was evaluated using three statistical methods: partitioning mean squared error, a reliability index (RI) and an index of modelling efficiency (MEF). Overall, model predictions closely tracked the observed changes of consumption and growth. The results of the different validation techniques show a high goodness-of-fit between observed and simulated values. The model clearly demonstrates the importance of temperature in determining growth of flounder in the estuary. A sex-specific estimation of the energetic costs of spawning in adult flounder and a more accurate description of the thermal history of the fish may further reduce the error in the model predictions.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors