IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Printer-friendly version

one publication added to basket [110833]
High-order h-adaptive discontinuous Galerkin methods for ocean modelling
Bernard, P.-E.; Chevaugeon, N.; Legat, V.; Deleersnijder, E.; Remacle, J.-F. (2007). High-order h-adaptive discontinuous Galerkin methods for ocean modelling. Ocean Dynamics 57(2): 109-121.
In: Ocean Dynamics. Springer-Verlag: Berlin; Heidelberg; New York. ISSN 1616-7341, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 121238 [ OMA ]

    Equations; Modelling; Marine
Author keywords
    shallow water equations H-adaptivity; discontinuous Galerkin; a posteriori error estimation

Authors  Top 
  • Bernard, P.-E., more
  • Chevaugeon, N.
  • Legat, V., more
  • Deleersnijder, E., more
  • Remacle, J.-F., more

    In this paper, we present an h-adaptive discontinuous Galerkin formulation of the shallow water equations. For a discontinuous Galerkin scheme using polynomials up to order p, the spatial error of discretization of the method can be shown to be of the order of hp+1, where h is the mesh spacing. It can be shown by rigorous error analysis that the discontinuous Galerkin method discretization error can be related to the amplitude of the inter-element jumps. Therefore, we use the information contained in jumps to build error metrics and size field. Results are presented for ocean modelling problems. A first experiment shows that the theoretical convergence rate is reached with the discontinuous Galerkin high-order h-adaptive method applied to the Stommel wind-driven gyre. A second experiment shows the propagation of an anticyclonic eddy in the Gulf of Mexico.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors