IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance
Valley, R.D.; Drake, M.T.; Anderson, C.S. (2005). Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance. Aquat. Bot. 81(1): 13-25. https://dx.doi.org/10.1016/j.aquabot.2004.09.002
In: Aquatic Botany. Elsevier Science: Tokyo; Oxford; New York; London; Amsterdam. ISSN 0304-3770; e-ISSN 1879-1522, more
Peer reviewed article  

Available in  Authors 

Keywords
    Abundance
    Flora > Aquatic organisms > Aquatic plants
    Information systems > GIS
    Mapping
    Remote sensing
    Spatial distribution
    Submergence
    USA, Minnesota, Christmas L.; USA, Minnesota, Schutz L. [Marine Regions]; USA, Minnesota, Square L.
    Fresh water
Author keywords
    habitat mapping; aquatic plants; hydroacoustics; GPS; GIS

Authors  Top 
  • Valley, R.D.
  • Drake, M.T.
  • Anderson, C.S.

Abstract
    New remote sensing technologies have emerged to quantitatively assess submersed aquatic vegetation abundance and distribution. We evaluated a hydroacoustics global positioning system to map the percent of the water column occupied by submersed vegetation (referred to here as biovolume) in three Minnesota (USA) lakes. We evaluated the relative accuracy and precision of digital biovolume maps produced by three interpolation methods (inverse distance weighted (IDW), kriging and spline) after using a non-parametric regression smoother to remove a non-linear depth trend. Interpolated predictions with all methods were relatively accurate in all lakes; however, precision varied among lakes. In all cases, kriging interpolation produced the best predictions when compared with observations in independent verification data sets. However, IDW predictions were only slightly less precise. Map detail was lost when sampling effort was reduced from 10 m transect spacing to 20 or 40 m, although estimates of littoral-wide means did not change appreciably. We concluded that hydroacoustics combined with geostatistics and interpolation in GIS can accurately and precisely display multi-scale patterns in biovolume.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors