Flanders Marine Institute

Platform for marine research

In:

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
report an error in this recordbasket (0): add | show Printer-friendly version

Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy
Dur, G.; Schmitt, F.G.; Souissi, S. (2007). Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy. Hydrobiologia 588(1): 59-68. dx.doi.org/10.1007/s10750-007-0652-3
In: Hydrobiologia. Springer: Berlin. ISSN 0018-8158, more
Peer reviewed article

Also published as
  • Dur, G.; Schmitt, F.G.; Souissi, S. (2007). Analysis of high frequency temperature time series in the Seine estuary from the Marel autonomous monitoring buoy, in: Lafite, R. et al. (Ed.) (2007). Consequences of estuarine management on hydrodynamics and ecological functioning: ECSA 38th Symposium - Rouen 2004 Co-organisation Seine-Aval Programme and ECSA. Hydrobiologia, 588: pp. 59-68, more

Available in Authors 

Keywords
    Buoys; Data; Estuaries; Missing data; Monitoring; Scaling; Temperature differences; Marine

Authors  Top 
  • Dur, G.
  • Schmitt, F.G.
  • Souissi, S., more

Abstract
    In the marine sciences, continuous monitoring systems have been regarded as very useful tools to provide continuous high frequency measurements of many parameters. We analyse here a high frequency time series of temperature measurements recorded every 10 min between 1997 and 2004 in the macro tidal Seine estuary (France) by a Marel buoy, an automatic monitoring network for littoral environment. We have adapted multi-scale data analysis methods to deal with the many missing values present in the time series. A power spectral density analysis is performed over time scales spanning 5 decades, from 20 min to more than 7 years. A scale invariant behaviour of the form E (f) = f with β = 2.2 is revealed for scales below 5 h. Over this scaling range, we have performed structure functions analysis, and shown that the Seine river temperature data exhibit turbulent-like intermittent properties, with multifractal statistics. The multifractal exponents obtained possess some similarities with passive scalar turbulence results.

 Top | Authors