IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

A summary of the geology of the Iranian Makran
McCall, G.J.H. (2002). A summary of the geology of the Iranian Makran, in: Clift, P.D. et al. The tectonic and climatic evolution of the Arabian Sea region. Geological Society Special Publication, 195: pp. 147-204. https://dx.doi.org/10.1144/GSL.SP.2002.195.01.10
In: Clift, P.D. et al. (2002). The tectonic and climatic evolution of the Arabian Sea region. Geological Society Special Publication, 195. The Geological Society: London. e-ISBN 9781862394438. VI, 525 pp. https://dx.doi.org/10.1144/GSL.SP.2002.195, more
In: Hartley, A.J. et al. (Ed.) Geological Society Special Publication. Geological Society of London: Oxford; London; Edinburgh; Boston, Mass.; Carlton, Vic.. ISSN 0305-8719; e-ISSN 2041-4927, more

Available in  Author 

Keywords
    Earth sciences > Geology > Structural geology
    Geological mapping
    Geological time > Phanerozoic > Geological time > Cenozoic
    Rocks > Metamorphic rocks
    Iran [Marine Regions]
    Marine/Coastal

Author  Top 
  • McCall, G.J.H.

Abstract
    The Iranian Makran has been entirely mapped geologically on a scale of 1:250 000, except for a narrow coastal strip, which exposes the very youngest Cenozoic sediments of the main Makran accretionary prism. The geology of the Makran is less widely known than the geology of Oman, because it has been published in detail only in reports of the Geological Survey of Iran. There is no extension of the geological formations of Oman into the Makran, the only extension of Oman ophiolitic formations into Iran being at Neyriz and Kermanshahr, hundreds of kilometres to the NW. This summary is based on field mapping, photo-interpretation being used only to connect traverse lines. The oldest rocks are metamorphic rocks, which form the basement to the Bajgan - Dur-kan microcontinental 'silver', a narrow block that extends hundreds of kilometres from the Bitlis Massif in Turkey, through the Sanandaj-Sirjan Block of the Zagros, to north of Nikshahr in the east of the Makran. Other metamorphic rocks form the Deyader Complex near Fannuj on the southern margin of the Jaz Murian Depression. These include blueschists, and are thought to form the tip of the Tabas Microcontinental Block, largely exposed north of the depression. There is also a small microcontinental block to the east, the Birk Block, which exposes only Cretaceous platform limestones and Permian sediments. The Bajgan Metamorphic Series are overlain, with a tectonized unconformable contact, by highly deformed and disrupted platform carbonates of Early Cretaceous to Early Paleocene age (Dur-kan Complex), containing tectonic inliers of Carboniferous, Permian and, rarely, Jurassic age. Ophiolites occur in two structural positions. South of the Bajgan-Dur-kan Block, the tectonic Coloured Me?lange of the Zagros continues eastwards inland of the Bashakerd Fault; this includes two layered ultramafic complexes, one with chromities. The blocks forming the me?lange include radiolarites and deep-water limestones of Jurassic to Early Paleocene age. Ophiolites developed north of the microcontinental block form three distinct igneous complexes, two layered and one with intermediate sheeted dykes. Intercalated in the volcanic rocks of these ophiolites are radiolarites and deep-water limestones ranging in age from Jurassic to Paleocene time. There are small developments of Cretaceous sediments carrying rudists in the extreme NW of the inner ophiolite tract. In the NE, ophiolites are developed in the Talkhab Me?lange. All these ophiolites represent former, largely Cretaceous, tracts of deep ocean. The Cenozoic rocks form two immense accretionary prisms. The main Makran prism includes Eocene-Oligocene and Oligocene-Miocene flysch turbidite sequences, estimated as individually > 10 000 m thick. Above these sequences, there is an abrupt passage up without any apparent unconformity, through reefal Burdigalian limestones, and locally a harzburgite conglomerate development, into neritic sequences with minor turbidites, extending into the Pliocene units. The Saravan accretionary prism to the east repeats tectonically three thick flysch turbidite sequences of Eocene-Oligocene age, but younger sediments are restricted here to minor Oligocene-Miocene conglomerates, unconformable on the above sequences. There is a line of Oligocene(?) granodiorite bodies within the Saravan accretionary prism. Intense folding and development of schuppen structure, dislocation and mélanging of the sediments affected the entire region in Late Miocene-Early Pliocene time. Post-tectonic uplift was followed by scattered developments of fanglomerates beneath the fault scarps. The Neogene deformation has obscured earlier deformational events. There is unconformity beneath Eocene sediments representing a mid-Paleocene disturbance. There is also evidence of a discontinuity in mid-Oligocene time. Pliocene-Pleistocene fanglomerates are unconformable on folded rocks. There are discontinous developments of Eocene-Oligocene neritic sediments unconformably above the older rocks (ophiolites, platform limestones, metamorphic rocks), and to the north of the southern edge of the Jaz Murian Depression, the northern limit of the Makran, there is evidence of the survival here of a very shallow sea through Neogene time and the formation of small patches of reefal Oligocene-Miocene limestones, and Eocene to Pliocene shallow-water clastic sediments. A 150 km wide tract separates the coast from the trench, the total Cenozoic accretionary prism being 500 km wide. Extension from the Murray Ridge affects the extreme east of the region. The Saravan accretionary prism, it is suggested. faced a gulf, comparable with the Gulf of Oman, and this Saravan Gulf filled up and closed up by Early Oligocene time. Seismological evidence suggests that there is now active continental collision continuing along this suture.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author