IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Helical swimming and body reversal behaviors in Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae)
Drewes, C.D. (1999). Helical swimming and body reversal behaviors in Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae). Hydrobiologia 406: 263-269
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158, more
Peer reviewed article  

Also published as
  • Drewes, C.D. (1999). Helical swimming and body reversal behaviors in Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae), in: Healy, B.M. et al. (Ed.) Aquatic Oligochaetes: Proceedings of the 7th International Symposium on Aquatic Oligochaetes held in Presque Isle, Maine, USA, 18-22 August 1997. Developments in Hydrobiology, 139: pp. 263-269, more

Available in Author 

Keyword
    Marine

Author  Top 
  • Drewes, C.D.

Abstract
    Two unusual locomotor behaviors (body reversal and helical swimming) are described and related to postembryonic body size in the freshwater oligochaete, Lumbriculus variegatus (Annelida: Clitellata: Lumbriculidae). Both behaviors occur as responses to tactile stimulation when worms are on smooth substrates that offer little or no traction or protection. Body reversal, evoked by touch to anterior segments, involves a stereotyped sequence of bending movements that effectively reverse head and tail positions in about 0.4 s in newly hatched worms and 0.6 s in juvenile and adult worms. Though little net shift in the body center occurs, reversal may optimize body positioning in preparation for swimming away from predatory threat. In contrast to reversal, swimming is evoked by touch to posterior segments and consists of a rapid, rhythmic sequence of helical body waves (frequency ~ 9-11 Hz). Waves alternate between clockwise and counter-clockwise helical orientations, with posterior passage of each wave providing forward thrust. Swim velocity and wave velocity increase with body size. Though total distance and duration of each swim episode is short (~ 1-2 body lengths in < 2 s), swimming may be an important means of predator avoidance in the littoral environment of these worms.

All data in IMIS is subject to the VLIZ privacy policy Top | Author