IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [118836]
On-site geological core analysis using a portable X-ray computed tomographic system
Freifeld, B.M.; Kneafsey, T.J.; Rack, F.R. (2006). On-site geological core analysis using a portable X-ray computed tomographic system, in: Rothwell, R.G. (Ed.) New techniques in sediment core analysis. Geological Society Special Publication, 267: pp. 165-178
In: Rothwell, R.G. (Ed.) (2006). New techniques in sediment core analysis. Geological Society Special Publication, 267. Geological Society: London. ISBN 1-86239-210-2. 266 pp. https://dx.doi.org/10.1144/GSL.SP.2006.267, more
In: Hartley, A.J. et al. (Ed.) Geological Society Special Publication. Geological Society of London: Oxford; London; Edinburgh; Boston, Mass.; Carlton, Vic.. ISSN 0305-8719; e-ISSN 2041-4927, more

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Freifeld, B.M.
  • Kneafsey, T.J.
  • Rack, F.R.

Abstract
    X-ray computed tomography (CT) is an established technique for non-destructively characterizing geological cores. CT provides information on sediment structure, diagenetic alteration, fractures, flow channels and barriers, porosity and fluid-phase saturation. A portable CT imaging system has been developed specifically for imaging whole-round cores at the drilling site. The new system relies upon carefully designed radiological shielding to minimize the size and weight of the resulting instrument. Specialized X-ray beam collimators and filters maximize system sensitivity and performance. The system has been successfully deployed on the research vessel JOIDES Resolution for Ocean Drilling Program's legs 204 and 210, at the Ocean Drilling Program's refrigerated Gulf Coast Core Repository, as well as on the Hot Ice #1 drilling platform located near the Kuparuk Field, Alaska. A methodology for performing simple densiometry measurements, as well as scanning for gross structural features, is presented using radiographs from ODP Leg 204. Reconstructed CT images from Hot Ice #1 demonstrate the use of CT for discerning core textural features. To demonstrate the use of CT to quantitatively interpret dynamic processes, we calculate 95% confidence intervals for density changes occurring during a laboratory methane hydrate dissociation experiment. The field deployment of a CT represents a paradigm shift in core characterization, opening up the possibility for rapid systematic characterization of three-dimensional structural features, and leading to improved subsampling and core-processing procedures.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors