IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Diffusion in a lattice-automaton model of bioturbation by small deposit feeders
Boudreau, B.P.; Choi, J.; Meysman, F.; François-Carcaillet, F. (2001). Diffusion in a lattice-automaton model of bioturbation by small deposit feeders. J. Mar. Res. 59(5): 749-768
In: Journal of Marine Research. Sears Foundation for Marine Research, Yale University: New Haven, Conn.. ISSN 0022-2402, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 138685 [ OMA ]

Keywords
    Bioturbation; Detritus feeders; Marine

Authors  Top 
  • Boudreau, B.P.
  • Choi, J.
  • Meysman, F., more
  • François-Carcaillet, F.

Abstract
    The mixing of 210Pb and tagged particles is examined in a lattice-automaton model for bioturbation containing small deposit feeders. The values of the biodiffusion coefficient, DB, calculated using typical biological parameter values, i.e., size, abundance, feeding and locomotion rates, are similar to those expected from marine sediments of a given sedimentation rate. Most biological parameters appear to exert primarily linear effects on DB values, while most nonlinearities seem to be model artifacts or failures of the assumptions in the basic DB model. The model highlights the importance of ingestion-egestion, over simple particle displacement, as an agent of bioturbation. The tagged particles are used to calculate root-mean-squared displacement plots, which are linear over long time spans, indicating diffusive behavior. However, initial trends on such plots are not usually linear, indicating that the calculated DB is time dependent for surprisingly long periods after the beginning of such experiments. The latter constitutes a warning to the interpretation of short-term tracer experiments where tagged-particles are salted onto the sediment-water interface and mixing is dominated by small deposit feeders.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors