IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans
Raiswell, R.; Tranter, M.; Benning, L.G.; Siegert, M.; De’ath, R.; Huybrechts, P.; Payne, T. (2006). Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans. Geochim. Cosmochim. Acta 70(11): 2765-2780. dx.doi.org/10.1016/j.gca.2005.12.027
In: Geochimica et Cosmochimica Acta. Elsevier: Oxford,New York etc.. ISSN 0016-7037, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Raiswell, R.
  • Tranter, M.
  • Benning, L.G.
  • Siegert, M.
  • De’ath, R.
  • Huybrechts, P., more
  • Payne, T.

Abstract
    Estimates of glacial sediment delivery to the oceans have been derived from fluxes of meltwater runoff and iceberg calving, and their sediment loads. The combined total (2900 Tg yr-1) of the suspended sediment load in meltwaters (1400 Tg yr-1) and the sediment delivered by icebergs (1500 Tg yr-1) are within the range of earlier estimates. High-resolution microscopic observations show that suspended sediments from glacial meltwaters, supraglacial, and proglacial sediments, and sediments in basal ice, from Arctic, Alpine, and Antarctic locations all contain iron (oxyhydr)oxide nanoparticles, which are poorly crystalline, typically ~5 nm in diameter, and which occur as single grains or aggregates that may be isolated or attached to sediment grains. Nanoparticles with these characteristics are potentially bioavailable. A global model comparing the sources and sinks of iron present as (oxyhydr)oxides indicates that sediment delivered by icebergs is a significant source of iron to the open oceans, beyond the continental shelf. Iceberg delivery of sediment containing iron as (oxyhydr)oxides during the Last Glacial Maximum may have been sufficient to fertilise the increase in oceanic productivity required to drawdown atmospheric CO2 to the levels observed in ice cores.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors