IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Inter-species differences for polychlorinated biphenyls and polybrominated diphenyl ethers in marine top predators from the Southern North Sea: Part 2. Biomagnification in harbour seals and harbour porpoises
Weijs, L.; Dirtu, A.C.; Das, K.; Gheorghe, A.; Reijnders, P.J.H.; Neels, H.; Blust, R.; Covaci, A. (2008). Inter-species differences for polychlorinated biphenyls and polybrominated diphenyl ethers in marine top predators from the Southern North Sea: Part 2. Biomagnification in harbour seals and harbour porpoises. Environ. Pollut. 157(2): 445-451. dx.doi.org/10.1016/j.envpol.2008.09.025
In: Environmental Pollution. Elsevier: Barking. ISSN 0269-7491, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 141548 [ OMA ]

Keywords
    Marine mammals; Polychlorinated biphenyls; ANE, North Sea [Marine Regions]; Marine

Authors  Top 

Abstract
    Harbour porpoises (Phocoena phocoena) and harbour seals (Phoca vitulina) were found to differ in the ability to metabolize polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). Biomagnification factors (BMFs), calculated between both predators and their prey (sole -Solea solea and whiting -Merlangius merlangus), had a large range of variation (between 0.5 and 91 for PCBs and between 0.6 and 53 for PBDEs). For the higher chlorinated PCBs and the highest brominated PBDEs, the BMF values in adult males were significantly higher than in the juvenile individuals of both species. BMF values of hexa- to octa-PCBs were the highest, suggesting reduced ability to degrade these congeners. Harbour porpoises had higher BMFs for lower chlorinated PCBs and for all PBDEs compared to harbour seals. Other factors, which may influence biomagnification, such as the octanol-water partition coefficients and the trophic level position measured through stable isotope (d15N) analysis, were found to be of lesser importance to predict biomagnification in the studied food chain.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors