IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research

In:

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations
Ringler, T.; Ju, L.; Gunzburger, M. (2008). A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dynamics 58(5-6): 475-498. dx.doi.org/10.1007/s10236-008-0157-2
In: Ocean Dynamics. Springer-Verlag: Berlin. ISSN 1616-7341, more
Peer reviewed article

Available in Authors 

Keywords
    Climate models; Delaunay triangulation; Multiresolution analysis; Voronoi graphs; Marine

Authors  Top 
  • Ringler, T.
  • Ju, L.
  • Gunzburger, M.

Abstract
    During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high-quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean-ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the po tential benefits of this multiresolution method and the challenges ahead.

 Top | Authors