IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

A conceptual model of the trophodynamical response to river discharge in a large marine ecosystem
Skreslet, S. (1997). A conceptual model of the trophodynamical response to river discharge in a large marine ecosystem, in: Ruddick, K. Processes in regions of freshwater influence (PROFILE): selected papers from the 27th International Liège Colloquium on Ocean Hydrodynamics, held in Liège, Belgium, on May 8-12, 1995. Journal of Marine Systems, 12(Special Issue 1-4): pp. 187-198
In: Ruddick, K. (1997). Processes in regions of freshwater influence (PROFILE): selected papers from the 27th International Liège Colloquium on Ocean Hydrodynamics, held in Liège, Belgium, on May 8-12, 1995. Journal of Marine Systems, 12(Special Issue 1-4). Elsevier: The Netherlands. 1-326 pp., more
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963, more
Peer reviewed article  

Available in Author 

Keyword
    Marine

Author  Top 
  • Skreslet, S.

Abstract
    Year-class strength in North-East Arctic cod (Gadus morhua), which inhabit the Barents Sea, and commercial landings of juveniles from this population, have been positively correlated with Norwegian meltwater discharge one and three years in advance, respectively. A conceptual model is developed, by empirical data used to investigate how the freshwater signal may be transmitted with time and in space through the food-web. It assumes that interannual variation in discharged volume of meltwater during summer forces planktonic primary production in neritic fronts. The strength of this impulse is transmitted from one organismic system to another, along the north Norwegian shelf, being advected by Calanus finmarchicus, a herbivorous copepod. The population system of this copepod interacts with the survival and growth of juvenile NE Arctic cod, and causes the cod stock size to fluctuate with the strength of the signal. By migration and advection within their respective population systems, NE Arctic cod and C. finmarchicus possibly transmit the freshwater signal on extensive time and space scales, from the Norwegian shelf to distant parts of the Arctic Mediterranean Ecocystem that contains both population systems. Continued empirical research and numerical modelling is needed to develop this theory.

All data in IMIS is subject to the VLIZ privacy policy Top | Author