IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Environmental variability facilitates coexistence within an alcid community at sea
Haney, J.C.; Schauer, A.E.S. (1994). Environmental variability facilitates coexistence within an alcid community at sea. Mar. Ecol. Prog. Ser. 103: 221-237
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Haney, J.C.
  • Schauer, A.E.S.

    We examined coexistence at sea among 7 taxa of diving; wing-propelled seabirds (Alcidae) in the genera Aethia, Uria, Cepphus, and Fratercula. Species abundances were measured simultaneously with a suite of environmental factors in the northern Bering Sea, Alaska, USA; data from 260 adjacent and non-adjacent sites occupied by alcids foraging offshore near breeding colonies were then subjected to principal component analysis (PCA). We used PCA to group redundant environmental descriptors, to identify orthogonal axes for constructing a multi-dimensional niche, and to differentiate species associations within niche dimensions from species associations among niche dimensions. Decomposition of the correlation matrix for 22 environmental and 7 taxonomic variables with PCA gave 14 components (10 environmental and 4 species interactions) that retained 90% of the original available variance. Alcid abundances (all species) were most strongly correlated with axes representing tidal stage, a time-area interaction (due to sampling layout), water masses, and a temporal or intra-seasonal trend partially associated with weather changes, Axes representing tidal stage, 2 gradients in macro-habitat (Anadyr and Bering Shelf Water masses), the micro-habitat of the sea surface, and an air-sea interaction were most important for detecting differences among species within niche dimensions. Contrary to assumptions of competition, none of 4 compound variables describing primarily species-interactions gave strong evidence for negative associations between alcid taxa sharing similar body sizes and feeding requirements, This exploratory analysis supports the view that alcids may segregate along environmental gradients at sea. But in this community, segregation was unrelated to foraging distance from colonies, in part because foraging 'substrate' was highly variable in structure, location, and areal extent. We contend that coexistence within this seabird group is facilitated via expanded niche dimensions created from a complex marine environment.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors