IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [133016]
Release of dissolved organic matter from natural populations of marine phytoplankton
Thomas, J.P. (1971). Release of dissolved organic matter from natural populations of marine phytoplankton. Mar. Biol. (Berl.) 11(4): 311-323
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 
  • Thomas, J.P.

Abstract
    A new method is presented for measuring the rate of release of dissolved organic matter (DOM) produced by natural populations of marine phytoplankton. The method has been field-tested using natural populations of estuarine, coastal, and oceanic phytoplankton. Problems associated with the necessity for long incubation times, high initial activity of the inorganic 14C added to the sample, and self-absorption are overcome. Improved sensitivity is obtained by utilizing a large portion of the sample filtrate, Results from sampling at different times of day and for different lengths of incubation suggest that these problems should be reexamined in terms of both the percent and rate of relase of DOM from natural populations of phytoplankton. The rate of release of DOM from natural populations of marine phytoplankton decreases seaward. Phytoplankton in Georgia (USA) estuaries release <1 to 40 mg C m-3 day-1, in southeastern USA coastal waters from 0 to 19 mg C m-3 day-1, and in the westernmost Sargasso Sea from 0 to 2 mg C m-3 day-1. The percent of photoassimilated carbon released as DOM increases seaward. The percents are less than 7% in the Georgia estuaries, generally less than 13% in southeastern USA surface coastal waters, generally less than 21% for these coastal waters below the surface, and less than 44% for the westernmost Sargasso Sea. The results of this study and of other studies suggest that the measurement of primary productivity in estuarine and nearshore coastal waters is not seriously in error because of the absence of measurements on the rate of release of DOM from such phytoplankton. However, the estimation of primary-productivity values for oceanic waters is underestimated in some cases by about 50%.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author