IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Measurements of Humidity and Temperature in the Marine Environment during the HEXOS Main Experiment
Katsaros, K.B.; DeCosmo, J.; Lind, R.J.; Anderson, R.J.; Smith, S.D.; Kraan, R.; Oost, W.; Uhlig, K.; Mestayer, P.G.; Larsen, S.E.; Smith, M.H.; De Leeuw, G. (1994). Measurements of Humidity and Temperature in the Marine Environment during the HEXOS Main Experiment. J. Atmos. Oceanic. Technol. 11(4): 964-981
In: Journal of Atmospheric and Oceanic Technology. American Meteorological Society: Boston, MA. ISSN 0739-0572, more
Peer reviewed article  

Available in Authors 


Authors  Top 
  • Katsaros, K.B.
  • DeCosmo, J.
  • Lind, R.J.
  • Anderson, R.J.
  • Smith, S.D.
  • Kraan, R.
  • Oost, W.
  • Uhlig, K.
  • Mestayer, P.G.
  • Larsen, S.E.
  • Smith, M.H.
  • De Leeuw, G.

    Accurate measurement of fluctuations in temperature and humidity are needed for determination of the surface evaporation rate and the air-sea sensible heat flux using either the eddy correlation or inertial dissipation method for flux calculations. These measurements are difficult to make over the ocean, and are subject to large errors when sensors are exposed to marine air containing spray droplets. All currently available commercial measurement devices for atmospheric humidity require frequent maintenance. Included in the objectives of the Humidity Exchange over the Sea program were testing and comparison of sensors used for measuring both the fluctuating and mean humidity in the marine atmosphere at high wind speeds and development of techniques for the protection of these sensors against contamination by oceanic aerosols. These sensors and droplet removal techniques are described and comparisons between measurements from several different systems are discussed in this paper. To accomplish these goals, participating groups devised and tested three methods of removing sea spray from the sample airstream. The best performance was given by a rotating semen device, the “spray Ringer.” Several high-frequency temperature and humidity instruments, based on different physical principles, were used in the collaborative field experiment. Temperature and humidity fluctuations were measured with sufficient accuracy inside the spray removal devices using Lyman-α hygrometers and a fast thermocouple psychrometer. Comparison of several types of psychrometers (using electric thermometers) and a Rotronic MP-100 humidity sensor for measuring the mean humidity illustrated the hysteresis of the Rotronic MP-100 device after periods of high relative humidity. Confidence in the readings of the electronic psychrometer was established by in situ calibration with repeated and careful readings of ordinary hand-held Assman psychrometers (based on mercury thermometers). Electronic psychrometer employing platinum resistance thermometers perform very well.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors