Flanders Marine Institute

Platform for marine research

In:

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes
Bethoux, J.P.; Gentili, B. (1996). The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes. The coastal ocean in a global change perspective 7(Special Issue 2-4): 383-394
In: Djenidi, S. (Ed.) (1996). The coastal ocean in a global change perspective. Journal of Marine Systems, 7(Special Issue 2-4). Elsevier: Amsterdam. 117-438 pp., more
In: Journal of Marine Systems. Elsevier: Amsterdam. ISSN 0924-7963, more
Peer reviewed article

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Bethoux, J.P.
  • Gentili, B.

Abstract
    At great scales of time and space, the dynamics of the Mediterranean Sea, a concentration basin, are mainly linked to its freshwater budget. This budget is subject to evolutions due to man's use of freshwater and to climatic changes affecting precipitation and/or evaporation. Marine dynamics and Atlantic, atmospheric and terrestrial inputs are strong constraints for the geochemical behaviour of the Mediterranean Sea. From measurements made during the last decades in the deep western water, it appeared that temperature, salinity, nutrients and trace metal concentrations were changing with time. In spite of its depth, the Mediterranean Sea looks like a coastal ocean, according to its coast length, watershed and number of inhabitants and to its fast response to climatic and environmental changes. The changes discovered in deep homogeneous waters are signatures of evolutions occurred in the surface layer. But in this layer and particularly in coastal waters, climatic and/or environmental trends may be masked by seasonal and interannual variabilities of not only physical and chemical characteristics but also climatic forcing or anthropic inputs. Analyses of river runoff, atmospheric inputs or climatic trends together with marine evolutions indicate constraints concerning probable changes in the coastal sea and/or in the surface water and processes involved at the interfaces. Moreover, changes observed in coastal or deep-water constitute new constraints for the modelling of the marine circulation and the transfer of matter.

 Top | Authors