IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea
Llabrés, M.; Agusti, S.; Alonso-Laita, P.; Herndl, G.J. (2010). Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 399: 27-37. http://dx.doi.org/10.3354/meps08332
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine
Author keywords
    Prochlorococcus; Synechococcus; Mediterranean Sea; UV radiation; Celldeath; UV penetration; Diffuse attenuation coefficient; UVLRD50

Authors  Top 
  • Llabrés, M.
  • Agusti, S.
  • Alonso-Laita, P.
  • Herndl, G.J., more

Abstract
    Irradiation experiments performed on natural communities of picocyanobacteria from the southwest Mediterranean Sea indicated that natural levels of solar ultraviolet radiation (UVR: 280 to 400 nm) induced important cell death in Prochlorococcus sp., although Synechococcus sp. appeared to be highly resistant. In the treatments where UVB radiation (UVBR, 280 to 315 nm) was excluded, Prochlorococcus also experienced high cell death with short half-life times of 3.01 +/- 0.1 SE (h), showing the contribution of UVA radiation (UVAR, 315 to 400 nm) and photosynthetically active radiation (PAR, 400 to 700 nm) to Prochlorococcus cell death. Underwater radiometric measurements conducted during the cruise indicated that penetration of UVR was significant in the Mediterranean waters studied, with minimum diffuse attenuation coefficients of 0.165 and 0.071 m(-1) for 313 and 380 nm, respectively. The lethal UV doses required to decrease the picocyanobacteria populations by half, UVLRD50, calculated experimentally, were related to underwater UVR penetration in the Mediterranean Sea measured during the cruise. By calculating (from incident irradiances and UVR penetration) the daily UV doses at different depths in the water column, we found that, for sunny days, experimental Prochlorococcus LRD50 (187 kJ m(-2)) could reach from 10 to 26 m depth. For Synechococcus, however, the depth receiving daily UVLRD50 (1375 kJ m(-2)) was always shallower, above 5 m depth. The differential sensitivity of the 2 genera and the UV transparency of the Mediterranean Sea suggest that solar radiation could be an important factor influencing the dynamics and distribution of cyanobacterial populations in the surface waters of this oligotrophic sea.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors