IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Modelling the dynamics of the North Sea's mesozooplankton
Broekhuizen, N.; Heath, M.R.; Hay, S.J.; Gurney, W.S.C. (1995). Modelling the dynamics of the North Sea's mesozooplankton. Neth. J. Sea Res. 33(3-4): 381-406
In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Broekhuizen, N.
  • Heath, M.R.
  • Hay, S.J.
  • Gurney, W.S.C.

Abstract
    A simple biomass-only zooplankton submodel is presented, describing the dynamics of copepods and carnivorous zooplankton in the North Sea. This submodel together with the other process-oriented submodels (viz. phytoplankton dynamics, the microbial food web, benthic processes, fish dynamics and large-scale advective transport) forms a spatially resolved simulation model of the North Sea ecosystem, the European Regional Seas Ecosystem Model (ERSEM). A large set of field measurements of zooplankton abundance has been assembled against which to compare the ERSEM's performance. These data are not only internally consistent, but have also been gathered at the large spatial scales appropriate to the ERSEM. In addition to the spatially resolved, monthly estimates of zooplankton abundance, several instantaneous, in situ estimates of the carbon fluxes between different components of the planktonic web in the northern North Sea are presented. Simulated dynamics are in good agreement with the data only during the mid-summer to mid-winter period. During the latter part of the winter and throughout the spring period zooplankton abundance is underpredicted and the simulated zooplankton growth rate is overpredicted during spring. The excessive decline of mesozooplankton biomass during winter may be caused by failing to capture many of the behavioural/physiological changes which zooplankton manifest during winter. It is suggested that the excessive spring growth is a consequence of a. a failure to properly distinguish between somatic and population growth, b. an inadequate representation of the small scale processes which influence feeding success, and c. an excessive spring phytoplankton bloom. The large phytoplankton bloom is, in part at least, a consequence of the excessively low simulated standing crop of omnivorous zooplankton in spring.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors