IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The benthic biological submodel in the European Regional Seas Ecosystem Model
Ebenhöh, W.; Kohlmeier, C.; Radford, P.J. (1995). The benthic biological submodel in the European Regional Seas Ecosystem Model. Neth. J. Sea Res. 33(3-4): 423-452
In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Ebenhöh, W.
  • Kohlmeier, C.
  • Radford, P.J.

Abstract
    The submodel describing benthic biology including a bioturbation module as incorporated in the European Regional Seas Ecosystem Model (ERSEM) is discussed. It is linked to a nutrient dynamic model. The structure of the benthic model food web is presented. There are four macrobenthic functional groups, meiobenthos and aerobic and anaerobic bacteria. The modelling uses 'standard organisms' as basic building blocks. The choice of parameter values is discussed. The results demonstrate the dependence of the benthic system on the pelagic system. The importance of features such as predation within functional groups for stability of the system is investigated. Detritus input from the pelagic system and detritus recycling is most important in the benthic food web. The web of carbon and nutrient fluxes through the system is analysed. On the basis of the food web analysis, the trophic positions of the functional groups are calculated. Besides the benthic biology, the mathematical formulation of the bioturbation and diffusion enhancement is discussed. Macrobenthic presence and activity enhance diffusion in the sediment and contribute essentially to vertical transport of particulate matter. This is of great importance for the vertical distribution of detritus, and as a consequence, for microbial activity in the sediment layers.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors