IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis
Du Laing, G.; Van Ryckegem, G.; Tack, F.G.G.; Verloo, M.G. (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere 63(11): 1815-1823. hdl.handle.net/10.1016/j.chemosphere.2005.10.034
In: Chemosphere. Elsevier: Oxford. ISSN 0045-6535, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 281373 [ OMA ]

Keywords
    Fungi [WoRMS]; Phragmites australis (Cav.) Trin. ex Steud. [WoRMS]
Author keywords
    Sediments; Fungi; Organic matter; Common reed; Wetlands; Scheldt estuary

Authors  Top 
  • Du Laing, G., more
  • Van Ryckegem, G., more
  • Tack, F.G.G.
  • Verloo, M.G., more

Abstract
    Metal contents of decomposing leaf blades, leaf sheaths and stems of common reed (Phragmites australis) were monitored by a litter bag method on the sediment of an intertidal brackish marsh in the Scheldt estuary (The Netherlands). On monthly intervals, two litter bags were retrieved from the marsh during 9 months for both leaf blades and sheaths and during 16 months for stems. All samples were dried, weighed and analysed for ash and Cd, Cu, Cr, Ni, Pb and Zn contents. Most concentrations increased considerably during the decomposition. Generally, also a very important net metal inflow into the litter bags could be observed. The inflow was highest for leaf blades. High correlations between ash contents and metal concentrations for leaf blades suggest that the increase of leaf blade metal contents can be due to physicochemical sorption of dissolved metals and an important infiltration of mud particles, which were not removed by rinsing the leaf blades with distilled water preceding the analyses. For stems, smaller amounts of inflowing ash and even outflowing ash amounts were found, which suggests that inflow of inorganic particles is not the major factor determining metal accumulation by stems on medium term. Ergosterol concentrations in stem tissue however proved to be correlated with metal contents, which suggests a significant role of fungal litter colonizers in metal accumulation. For leaf sheaths, the effects of physicochemical sorption, infiltration of mud particles and incorporation by microbial litter colonizers do not seem to be as pronounced as for stems and leaf blades.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors