IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Latitudinal clines in body size, but not in thermal tolerance or heat-shock cognate 70 (HSC70), in the highly-dispersing intertidal gastropod Littorina keenae (Gastropoda: Littorinidae)
Je Lee, H.; Boulding, E.G. (2010). Latitudinal clines in body size, but not in thermal tolerance or heat-shock cognate 70 (HSC70), in the highly-dispersing intertidal gastropod Littorina keenae (Gastropoda: Littorinidae). Biol. J. Linn. Soc. 100(3): 494-505. https://dx.doi.org/10.1111/j.1095-8312.2010.01450.x
In: Biological Journal of the Linnean Society. Academic Press: London; New York. ISSN 0024-4066; e-ISSN 1095-8312, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Je Lee, H.
  • Boulding, E.G.

Abstract
    Natural populations of widely-distributed animals often exhibit clinal variation in phenotypic traits or in allele frequencies of a particular gene over their geographical range. A planktotrophic intertidal snail, Littorina keenae is broadly distributed along the north-eastern Pacific coast through a large latitudinal range (24°50′N–43°18′N). We tested for latitudinal clines in two complex phenotypic traits – thermal tolerance and body size – and one single locus trait – heat shock cognate 70 (HSC70) – in L. keenae along almost its entire geographical range. We found only weak evidence for a latitudinal cline in the thermal tolerance and no evidence for a cline in allele frequencies at HSC70. However, as predicted by Bergmann's rule, we detected a strong latitudinal cline that accounted for 60% of the variance in body size (R2 = 0.598; P < 0.001). In contrast, body size did not significantly affect thermal tolerance. HSC70 showed no genetic differentiation among the populations, supporting our previous mitochondrial gene-based estimate of high gene flow during this snail's free-swimming larval stage. Given that L. keenae experiences panmixia along its species range, the observed size cline may be partially or entirely caused by a phenotypically plastic response to local thermal environments rather than by genetic divergence in body size among populations in response to locally optimizing natural selection

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors