IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Vibrio cholerae in recreational beach waters and tributaries of Southern California
Jiang, S.C. (2001). Vibrio cholerae in recreational beach waters and tributaries of Southern California, in: Porter, J.W. (Ed.) The ecology and ethiology of newly emerging marine diseases. Developments in Hydrobiology, 159: pp. 157-164. dx.doi.org/10.1023/A:1013152407425
In: Porter, J.W. (Ed.) (2001). The ecology and etiology of newly emerging marine diseases. Reprinted from Hydrobiologia 460. Developments in Hydrobiology, 159. Springer Science+Business Media: Dordrecht. ISBN 978-90-481-5930-7; e-ISBN 978-94-017-3284-0. xvi, 228 pp. https://dx.doi.org/10.1007/978-94-017-3284-0, more
In: Dumont, H.J. (Ed.) Developments in Hydrobiology. Kluwer Academic/Springer: The Hague; London; Boston; Dordrecht. ISSN 0167-8418, more

Available in  Author 

Keywords
    Hybridization
    Prokaryotes > Microorganisms > Bacteria > Gracilicutes > Vibrionaceae > Vibrio > Vibrio cholerae
    Marine/Coastal

Author  Top 
  • Jiang, S.C.

Abstract
    Vibrio cholerae is the causative agent of the severe dehydrating diarrheal disease cholera. This bacterium has been detected in many estuaries around the world and the United States. In this study we examine the abundance and distribution of V. cholerae in recreational beach waters and tributaries of Southern California. Water samples were taken from 11 beach locations adjacent to freshwater runoff sources between February 8th and March 1st, 1999. Water samples were also taken from rivers, creeks and coastal wetlands along the Southern California coast between May 19th and June 28th, 1999. In addition to the detection of V. cholerae, environmental parameters including temperature, salinity, coliphage counts, viable heterotrophic plate counts and total bacterial direct counts were also determined to understand the relationships between the presence of V. cholerae and environmental conditions. A direct colony hybridization method using an oligonucleotide probe specific for the 16S–23S intergenic spacer region of V. cholerae, detected V. cholerae in 3 of the 11 beach samples with the highest concentration (60.9 per liter) at the mouth of Malibu Lagoon. V. cholerae and coliphage were not correlated for beach samples, indicating that the presence of V. cholerae is independent of sewage pollution. V. cholerae were detected in all samples taken from rivers, creeks and wetlands of coastal Southern California where salinities were between 1 to 34 parts per thousand (ppt), but was not found at a freshwater sampling site in upper San Juan Creek. The highest density of V. cholerae was found in San Diego Creek with a concentration of 4.25×105 CFU/L. The geographical distribution of V. cholerae was inversely correlated with salinity. High concentrations of V. cholerae were more frequently detected in waters with lower (but above 0) salinity. The results of this study provide insight into the ecology of this aquatic species and are potentially important to the understanding of the epidemiology of cholera on a global scale.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author