IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [207871]
Physiological responses of estuarine animals to cadmium pollution
Theede, H. (1980). Physiological responses of estuarine animals to cadmium pollution. Helgol. Meeresunters. 33(1-4): 26-35. https://dx.doi.org/10.1007/BF02414732
In: Helgoländer Meeresuntersuchungen. Biologische Anstalt Helgoland: Hamburg. ISSN 0174-3597, more
Also appears in:
Kinne, O.; Bulnheim, H.-P. (Ed.) (1980). Protection of life in the sea: 14th European Marine Biology Symposium, 23-29 September 1979, Helgoland. Helgoländer Meeresuntersuchungen, 33(1-4). Biologische Anstalt Helgoland: Hamburg. 772 pp., more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 
  • Theede, H.

Abstract
    Toxic effects of cadmium contamination may be observed at all levels of organismic organization. In estuarine areas the sensitivity of euryhaline species to acute Cd toxicity is strongly modified by various abiotic factors, whereas long-term threshold values are less dependent on environmental parameters. Experiments with larval stages of the mollusc Mytilus edulis reveal that Cd effects on life functions such as development and growth are differentially modified by temperature and salinity. High Cd concentrations can be accumulated by adult bivalves of coastal areas without signs of physiological damage. Mechanisms of heavy-metal detoxication in these molluscs seem to be quite different from those known to exist in vertebrates. Among decapod crustaceans, stenoecous species tend to exhibit higher rates of Cd uptake than euryoecous ones. Rates of Cd uptake and of accumulation depend on external and internal factors. In adult Nereis succinea individuals sublethal Cd effects have been recorded on growth and food conversion (in terms of energy content).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author