IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Evaluation of the attachment strength of individuals of Asterina gibbosa (Asteroidea, Echinodermata) during the perimetamorphic period
Haesaerts, D.; Finlay, J.A.; Callow, M.E.; Callow, J.A.; Grosjean, P.; Jangoux, M.; Flammang, P. (2005). Evaluation of the attachment strength of individuals of Asterina gibbosa (Asteroidea, Echinodermata) during the perimetamorphic period. Biofouling (Print) 21(5-6): 229-235. dx.doi.org/10.1080/08927010500414901
In: Biofouling. Taylor & Francis: Chur; New York. ISSN 0892-7014, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine
Author keywords
    shear stress; adhesion; perimetamorphic period; benthic boundary layer;

Authors  Top 
  • Haesaerts, D., more
  • Finlay, J.A.
  • Callow, M.E.
  • Callow, J.A.

Abstract
    A turbulent channel flow apparatus was used to determine the adhesion strength of the three perimetamorphic stages of the asteroid Asterina gibbosa , i.e. the brachiolaria larvae, the metamorphic individuals and the juveniles. The mean critical wall shear stresses (wall shear stress required to dislodge 50% of the attached individuals) necessary to detach larvae attached by the brachiolar arms (1.2 Pa) and juveniles attached by the tube feet (7.1 Pa) were one order of magnitude lower than the stress required to dislodge metamorphic individuals attached by the adhesive disc (41 Pa). This variability in adhesion strength reflects differences in the functioning of the adhesive organs for these different life stages of sea stars. Brachiolar arms and tube feet function as temporary adhesion organs, allowing repetitive cycles of attachment to and detachment from the substratum, whereas the adhesive disc is used only once, at the onset of metamorphosis, and is responsible for the strong attachment of the metamorphic individual, which can be described as permanent adhesion. The results confirm that the turbulent water channel apparatus is a powerful tool to investigate the adhesion mechanisms of minute organisms.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors