IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles
Rixen, M.; Book, J.W.; Carta, A.; Grandi, V.; Gualdesi, L.; Stoner, R.; Ranelli, P.; Cavanna, A.; Zanasca, P.; Baldasserini, G.; Trangeled, A.; Lewis, C.; Trees, C.; Grasso, R.; Giannechini, S.; Fabiani, A.; Merani, D.; Berni, A.; Leonard, M.; Martin, P.; Rowley, C.; Hulbert, M.; Quaid, A.; Goode, W.; Preller, R.; Pinardi, N.; Oddo, P.; Guarnieri, A.; Chiggiato, J.; Carniel, S.; Russo, A.; Tudor, M.; Lenartz, F.; Vandenbulcke, L. (2009). Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles. J. Mar. Syst. 78: S282-S289. dx.doi.org/10.1016/j.jmarsys.2009.01.014
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 231095 [ OMA ]

Keyword
    Marine
Author keywords
    Ocean prediction skill; Uncertainties; Multi model super-ensembles;

Authors  Top 
  • Rixen, M.
  • Book, J.W.
  • Carta, A.
  • Grandi, V.
  • Gualdesi, L.
  • Stoner, R.
  • Ranelli, P.
  • Cavanna, A.
  • Zanasca, P.
  • Baldasserini, G.
  • Trangeled, A.
  • Lewis, C.
  • Trees, C.
  • Grasso, R.
  • Giannechini, S.
  • Fabiani, A.
  • Merani, D.
  • Berni, A.
  • Leonard, M.
  • Martin, P.
  • Rowley, C.
  • Hulbert, M.
  • Quaid, A.
  • Goode, W.
  • Preller, R.
  • Pinardi, N.
  • Oddo, P.
  • Guarnieri, A.
  • Chiggiato, J.
  • Carniel, S.
  • Russo, A.
  • Tudor, M.
  • Lenartz, F., more
  • Vandenbulcke, L., more

Abstract
    The use of Multi-model Super-Ensembles (SE) which optimally combine different models, has been shown to significantly improve atmospheric weather and climate predictions. In the highly dynamic coastal ocean, the presence of small-scales processes. the lack of real-time data, and the limited skill of operational models at the meso-scale have so far limited the application of SE methods. Here, we report results from state-of-the-art super-ensemble techniques in which SEPTR (a trawl-resistant bottom mounted instrument platform transmitting data in near real-time) temperature profile data are combined with outputs from eight ocean models run in a coastal area during the Dynamics of the Adriatic in Real-Time (DART) experiment in 2006. New Kalman filter and particle filter based SE methods, which allow for dynamic evolution of weights and associated uncertainty, are compared to standard SE techniques and numerical models. Results show that dynamic SE are able to significantly improve prediction skill. In particular, the particle fitter SE copes with non-Gaussian error statistics and provides robust and reduced uncertainty estimates.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors