IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)
Struyf, E.; Van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P. (2005). Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar. Ecol. Prog. Ser. 303: 51-60.
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 231288 [ OMA ]

    Phragmites australis (Cav.) Trin. ex Steud. [WoRMS]
Author keywords
    biogenic silica; freshwater marsh; estuary; Phragmites australis;

Authors  Top 
  • Struyf, E., more
  • Van Damme, S., more
  • Gribsholt, B.
  • Middelburg, J.J.
  • Meire, P., more

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens glandulifera, Urtica dioica, Epilobium hirsutum and Salix sp. was analysed year-round. All herbaceous species accumulated silica in their tissue during their life cycle. Of the live plants, P. australis contained the most BSi (accumulating from 6 to 55 mg g-1). Dead shoots of P. australis had the highest BSi content (up to 72.2 mg g-1). U. dioica (<11.1 mg g-1), I. glandulifera (<1.1 mg g-1), E. hirsutum (<1.2 mg g-1) and Salix sp. (<1.9 mg g-1) had a much lower BSi content. Except for R. australis rhizomes (<15 mg g-1) underground biomass contained low amounts of BSi (<6 mg g-1). Sediment BSi content decreased from the surface (9 to 10 mg g-1) to deeper layers (5 to 7 mg g-1), There was seasonal variation in sediment BSi. Dissolved Si in porewater was highest in summer (ca. 600 µM) and lowest in winter (ca. 400 µM). P. australis vegetation (aboveground and roots) contained up to 126 g m-2 BSi, while the upper 30 cm of sediment accumulated up to 1500 g m-2, making sediment the largest BSi reservoir in the marsh. We conclude that P. australis wetlands could be an essential, but unrecognised, sink for BSi in the biogeochemical cycling of Si.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors