IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [211389]
A parameterization of ice shelf-ocean interaction for climate models
Beckmann, A.; Goosse, H. (2003). A parameterization of ice shelf-ocean interaction for climate models. Ocean Modelling 5(2): 157-170. dx.doi.org/10.1016/S1463-5003(02)00019-7
In: Ocean Modelling. Elsevier: Oxford. ISSN 1463-5003; e-ISSN 1463-5011, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    ice shelf melting; fresh water forcing; parameterization; climate

Authors  Top 
  • Beckmann, A.
  • Goosse, H., more

Abstract
    Model results from a regional model (BRIOS) of the Southern Ocean that includes ice shelf cavities and the interaction between ocean and ice shelves are used to derive a simple parameterization for ice shelf melting and the corresponding fresh water flux in large-scale ocean climate models. The parameterization assumes that the heat loss and fresh water gain due to the ice shelves are proportional to the difference in freezing temperature at the ice shelf edge base and the oceanic temperature on the shelf/slope area of the adjacent ocean as well as an effective area of interaction. This area is proportional to the along-shelf width of ice shelf and an effective cross-shelf distance, which turns out to be rather uniform (5-15 km) for a variety of different ice shelves. The proposed parameterization is easy to implement and valid for a wide range of circumstances. An application of the proposed scheme in a global ice ocean model (CLIO) supports our hypothesis that it can be used successfully and improves both the ocean and sea ice component of the model. This parameterization should also be used in models of the climate system that include a coupling between an ice sheet and an oceanic component.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors