IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa
Ingels, J.; Vanreusel, A.; Brandt, A.; Catarino, A.I.; David, B.; De Ridder, C.; Dubois, P.; Gooday, A.J.; Martin, P.; Pasotti, F.; Robert, H. (2012). Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecol. Evol. 2(2): 453-485. dx.doi.org/10.1002/ece3.96
In: Ecology and Evolution. John Wiley & Sons: Chichester. ISSN 2045-7758, more
Peer reviewed article  

Available in  Authors 

Keywords
Author keywords
    Amphipoda; Echinoidea; Foraminifera; global climate change; Isopoda;Nematoda; Southern Ocean; zoobenthos

Authors  Top 

Abstract
    Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors