IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants
Price, D.C.; Chan, C.X.; Yoon, H.S.; Yang, E.C.; Qiu, H.; Weber, A.P.M.; Schwacke, R.; Gross, J.; Blouin, N.A.; Lane, C.; Reyes-Prieto, A.; Durnford, D.G.; Neilson, J.A.D.; Lang, B.F. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science (Wash.) 335(6070): 843-847 + Supporting Online Material.
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Price, D.C.
  • Chan, C.X.
  • Yoon, H.S.
  • Yang, E.C.
  • Qiu, H.
  • Weber, A.P.M.
  • Schwacke, R.
  • Gross, J.
  • Blouin, N.A.
  • Lane, C.
  • Reyes-Prieto, A.
  • Durnford, D.G.
  • Neilson, J.A.D.
  • Lang, B.F.

    The primary endosymbiotic origin of the plastid in eukaryotes more than 1 billion years ago led to the evolution of algae and plants. We analyzed draft genome and transcriptome data from the basally diverging alga Cyanophora paradoxa and provide evidence for a single origin of the primary plastid in the eukaryote supergroup Plantae. C. paradoxa retains ancestral features of starch biosynthesis, fermentation, and plastid protein translocation common to plants and algae but lacks typical eukaryotic light-harvesting complex proteins. Traces of an ancient link to parasites such as Chlamydiae were found in the genomes of C. paradoxa and other Plantae. Apparently, Chlamydia-like bacteria donated genes that allow export of photosynthate from the plastid and its polymerization into storage polysaccharide in the cytosol.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors