IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries
Han, S.; Obraztsova, A.; Pretto, P.; Deheyn, D.D.; Gieskes, J.M.; Tebo, B.M. (2008). Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Mar. Chem. 111(3-4): 214-220.
In: Marine Chemistry. Elsevier: Amsterdam. ISSN 0304-4203, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 279870 [ OMA ]

Author keywords
    Mercury; Methyl mercury; Sulfate reduction; Sediments; Italy; Venice Lagoon

Authors  Top 
  • Han, S.
  • Obraztsova, A.
  • Pretto, P.
  • Deheyn, D.D., more
  • Gieskes, J.M.
  • Tebo, B.M.

    In order to understand the role of sulfate and Fe(III) reduction processes in the net production of monomethylmercury (MMHg), we amended anoxic sediment slurries collected from the Venice Lagoon, Italy, with inorganic Hg and either potential electron acceptors or metabolic byproducts of sulfate and Fe(III) reduction processes, gradually changing their concentrations. Addition of sulfide (final concentration: 0.2–6.3 mM) resulted in an exponential decrease in the sulfate reduction rate and MMHg concentration with increasing concentrations of sulfide. Based on this result, we argue that the concentration of dissolved sulfide is a critical factor controlling the sulfate reduction rate, and in turn, the net MMHg production at steady state. Addition of either Fe(II) (added concentration: 0–6.1 mM) or Fe(III) (added concentration: 0–3.5 mM) resulted in similar trends in the MMHg concentration, an increase with low levels of Fe additions and a subsequent decrease with high levels of Fe additions. The limited availability of dissolved Hg, associated with sulfide removal by precipitation of FeS, appears to inhibit the net MMHg production in high levels of Fe additions. There was a noticeable reduction in the net MMHg production in Fe(III)-amended slurries as compared to Fe(II)-amended ones, which could be caused by a decrease in the sulfate reduction rate. This agrees with the results of Hg methylation assays using the enrichment cultures of anaerobic bacteria: whereas the enrichment cultures of sulfate reducers showed significant production of MMHg (4.6% of amended Hg), those of Fe(III), Mn(IV), and nitrate reducers showed no production of MMHg. It appears that enhanced Fe(III)-reduction activities suppress the formation of MMHg in high sulfate estuarine sediments.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors