IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Rapid variability of seawater chemistry over the past 130 million years
Wortmann, U.G.; Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 million years. Science (Wash.) 337(6092): 334-336.
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Wortmann, U.G.
  • Paytan, A.

    Fluid inclusion data suggest that the composition of major elements in seawater changes slowly over geological time scales. This view contrasts with high-resolution isotope data that imply more rapid fluctuations of seawater chemistry. We used a non–steady-state box model of the global sulfur cycle to show that the global d34S record can be explained by variable marine sulfate concentrations triggered by basin-scale evaporite precipitation and dissolution. The record is characterized by long phases of stasis, punctuated by short intervals of rapid change. Sulfate concentrations affect several important biological processes, including carbonate mineralogy, microbially mediated organic matter remineralization, sedimentary phosphorous regeneration, nitrogen fixation, and sulfate aerosol formation. These changes are likely to affect ocean productivity, the global carbon cycle, and climate.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors