IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Marine toxins potently affecting neurotransmitter release
Meunier, F.; Mattei, C.; Molgó, J. (2009). Marine toxins potently affecting neurotransmitter release, in: Fusetani, N. et al. (Ed.) Marine toxins as research tools. Progress in Molecular and Subcellular Biology. Marine Molecular Biotechnology, 46: pp. 159-186. dx.doi.org/10.1007/978-3-540-87895-7_6
In: Fusetani, N.; Kem, W. (Ed.) (2009). Marine toxins as research tools. Progress in Molecular and Subcellular Biology. Marine Molecular Biotechnology, 46. Springer: Berlin. ISBN 978-3-540-87892-6. xiv, 259 pp., more
In: Müller, W.E.G. (Ed.) Progress in Molecular and Subcellular Biology. Marine Molecular Biotechnology. Springer: Berlin. ISSN 1611-6119, more

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Meunier, F.
  • Mattei, C.
  • Molgó, J.

Abstract
    Synapses are specialised structures where interneuronal communication takes place. Not only brain function is absolutely dependent on synaptic activity, but also most of our organs are intimately controlled by synaptic activity. Synapses re therefore an ideal target to act upon and poisonous species have evolved fascinating neurotoxins capable of shutting down neuronal communication by blocking or activating essential components of the synapse. By hijacking key proteins of the communication machinery, neurotoxins are therefore extremely valuable tools that have, in turn, greatly helped our understanding of synaptic biology. Moreover, analysis and understanding of the molecular strategy used by certain neurotoxins has allowed the design of entirely new classes of drugs acting on specific targets with high selectivity and efficacy. This chapter will discuss the different classes of marine neurotoxins, their effects on neurotransmitter release and how they act to incapacitate key steps in the process leading to synaptic vesicle fusion.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors