IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland)
Mouton, A.M.; Schneider, M.; Peter, A.; Holzer, G.; Müller, R.; Goethals, P.L.M.; De Pauw, N. (2008). Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecol. Model. 215(1-3): 122-132. hdl.handle.net/10.1016/j.ecolmodel.2008.02.028
In: Ecological Modelling. Elsevier: Amsterdam; Lausanne; New York; Oxford; Shannon; Tokyo. ISSN 0304-3800, more
Peer reviewed article  

Available in Authors 

Keywords
    Pisces [WoRMS]; Fresh water
Author keywords
    Fuzzy logic; Fish; Stream; Hill-climbing; Data mining; Hybrid models; Habitat suitability

Authors  Top 
  • Mouton, A.M., more
  • Schneider, M.
  • Peter, A.
  • Holzer, G.
  • Müller, R.
  • Goethals, P.L.M., more
  • De Pauw, N., more

Abstract
    Ecological expert knowledge is often based on qualitative rules consisting of linguistic terms such as ‘low’, ‘moderate’ or ‘high’. Since fuzzy systems transform these rules and terms into a mathematical framework, they allow implementing this expert knowledge in ecological models. However, the development of a reliable knowledge base is complex and time consuming. Recent research has shown that complementing fuzzy systems by data-driven techniques can solve this knowledge acquisition bottleneck. In this paper, a heuristic nearest ascent hill-climbing algorithm for rule base optimisation is applied to construct a fuzzy rule-based habitat suitability model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Bern, Switzerland). Optimisation of the fuzzy rule-based model was based on two different training criteria, the weighted correctly classified instances (CCIw) and Cohen's Kappa. The ecological relevance of the results was assessed by comparing the optimised rule bases with a rule base derived from ecological expert knowledge. Optimisation based on Kappa appeared to generate acceptable results (CCI = 0.70; Kappa = 0.32) and was more practical than optimisation based on CCIw since the latter required fine tuning of a weight parameter, which accounted for the species prevalence. The optimal rules showed 74% similarity with the rules derived from expert knowledge, while 84% of all model errors was due to false positive predictions of the model. These errors might be due to the impact of variables, which were not included in this study on grayling presence and thus are not necessarily a model error. The habitat suitability model optimised in this paper is able to predict the effect of different impacts on the river system and to select the optimal restoration option. Hence, it could be a valuable decision support tool for river managers and ease the discussion between stakeholders.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors