IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Structural dynamics and ecology of flatfish populations
Bailey, K.M. (1997). Structural dynamics and ecology of flatfish populations. J. Sea Res. 37(3-4): 269-280. hdl.handle.net/10.1016/S1385-1101(97)00018-X
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine
Author keywords
    flatfish; population dynamics; dispersal; metapopulations; genetic structure

Author  Top 
  • Bailey, K.M.

Abstract
    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for marine fishes, is at a rudimentary level.

All data in IMIS is subject to the VLIZ privacy policy Top | Author