IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere
French, S.; Lekic, V.; Romanowicz, R. (2013). Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science (Wash.) 342(6155): 227-230.
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • French, S.
  • Lekic, V.
  • Romanowicz, R.

    Understanding the relationship between different scales of convection that drive plate motions and hotspot volcanism still eludes geophysicists. Using full-waveform seismic tomography, we imaged a pattern of horizontally elongated bands of low shear velocity, most prominent between 200 and 350 kilometers depth, which extends below the well-developed low-velocity zone. These quasi-periodic fingerlike structures of wavelength ~2000 kilometers align parallel to the direction of absolute plate motion for thousands of kilometers. Below 400 kilometers depth, velocity structure is organized into fewer, undulating but vertically coherent, low-velocity plumelike features, which appear rooted in the lower mantle. This suggests the presence of a dynamic interplay between plate-driven flow in the low-velocity zone and active influx of low-rigidity material from deep mantle sources deflected horizontally beneath the moving top boundary layer.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors