IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction
Jonkers, L.; Jiménez-Amat, P.; Mortyn, P.G.; Brummer, G.-J.A. (2013). Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction. Earth Planet. Sci. Lett. 376: 137-144.
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Mg/Ca-temperature proxy; stable oxygen isotopes; planktonicforaminifera; sediment trap; North Atlantic

Authors  Top 
  • Jonkers, L.
  • Jiménez-Amat, P.
  • Mortyn, P.G., more
  • Brummer, G.-J.A., more

    Given the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10 degrees C) by comparing for the first time the seasonal Mg/Ca and delta O-18 cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal delta O-18 patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The delta O-18 patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors