IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The ocean's internal motion: A short overview of NIOZ thermistor string observations
van Haren, H. (2012). The ocean's internal motion: A short overview of NIOZ thermistor string observations. J. Sea Res. 74: 8-15. dx.doi.org/10.1016/j.seares.2012.04.008
In: Journal of Sea Research. Elsevier/Netherlands Institute for Sea Research: Amsterdam; Den Burg. ISSN 1385-1101, more
Peer reviewed article  

Available in Author 

Author keywords
    Thermistor String Observations; Internal Wave-Turbulence; 0.1-100 mvertical scales, 10-10000 s time-scales

Author  Top 
  • van Haren, H., more

Abstract
    Detailed observations of the variability in space and time of motions that dominate redistribution of material and heat are rare. However, these motions are vital for life in seas and ocean. Modern electronics have allowed the manufacturing of 1-Hz high-sampling rate, <1-mK precision, 6000-m depth-rated temperature sensors with the potential of 1-year uninterrupted stand-alone operation. These sensors have been specifically developed for use in a vertical array of many O(100), to study dynamic processes like fronts and internal waves in shallow seas and deep ocean. Under conditions of sufficient spatial vertical resolution, O(0.1-1 m), and temperature acting as a proper tracer for density variations, the sensors are excellent in estimating turbulence parameters generated by such processes. In the ocean interior, they reveal continuous internal wave variability and step-like vertical layering in temperature, but very little turbulence. Above sloping topography, small- and large-scale overturnings yield turbulence parameter values which vary by up to four orders of magnitude as a function of time. Largest values are observed in bursts lasting typically 500-1000 s and associated with nonlinear internal wave passages. These bursts occur irregularly in a tidal phase. When extrapolated to the ocean at large, sufficient mixing is observed above sloping boundaries to maintain the overall vertical density stratification.

All data in IMIS is subject to the VLIZ privacy policy Top | Author