IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current
Paul, M.; Bouma, T.J.; Amos, C.L. (2012). Wave attenuation by submerged vegetation: combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 444: 31-41. dx.doi.org/10.3354/meps09489
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630, more
Peer reviewed article  

Available in Authors 

Author keywords
    Waves; Currents; Artificial seagrass; Vegetation traits; Waveattenuation

Authors  Top 
  • Paul, M.
  • Bouma, T.J., more
  • Amos, C.L.

Abstract
    Accurate wave height prediction along the shore plays an important role in coastal protection and management. To account for the effect of submerged vegetation in wave-attenuation models, it is important to understand how the interaction between vegetation characteristics and hydrodynamic forcing affects wave attenuation. To determine the effect of vegetation characteristics, we used seagrass mimics that varied in (1) blade stiffness, (2) shoot density and (3) leaf length; to investigate the effect of hydrodynamic forcing, we studied wave attenuation in the absence and presence of a tidal current. Results show that wave attenuation is positively correlated with blade stiffness and for a given wave in shallow water, attenuation is dependent on a combination of shoot density and leaf length, which can be described by the leaf area index. The presence of a tidal current strongly reduced the wave-attenuating capacity of seagrass mimics, and this reduction was most pronounced at high shoot densities. Thus, most studies that have been carried out under waves only will structurally overestimate wave attenuation for tidal environments, emphasising that tidal currents need to be taken into account in future studies on wave attenuation by vegetation.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors