IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Internal wave-turbulence pressure above sloping sea bottoms
van Haren, H. (2011). Internal wave-turbulence pressure above sloping sea bottoms. J. Geophys. Res. 116. dx.doi.org/10.1029/2011JC007085
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227, more
Peer reviewed article  

Available in Author 

Author  Top 
  • van Haren, H., more

Abstract
    An accurate bottom pressure sensor has been moored at different sites varying from a shallow sea strait via open ocean guyots to a 1900 m deep Gulf of Mexico. All sites show more or less sloping bottom topography. Focusing on frequencies (sigma) higher than tidal, the pressure records are remarkably similar, to within the 95% statistical significance bounds, in the internal gravity wave continuum (IWC) band up to buoyancy frequency N. The IWC has a relatively uniform spectral slope: log(P(sigma)) = -alpha log(sigma), alpha = 2 +/- 1/3. The spectral collapse is confirmed from independent internal hydrostatic pressure estimate, which suggests a saturated IWC. For sigma > N, all pressure-spectra transit to a bulge that differs in magnitude. This bulge is commonly attributed to long surface waves. For the present data it is suggested to be due to stratified turbulence-internal wave coupling, which is typically large over sloping topography. The bulge drops off at a more or less common frequency of 2-3 x 10(-2) Hz, which is probably related with typical turbulent overturning scales.

All data in IMIS is subject to the VLIZ privacy policy Top | Author