IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand
Hamdan, L.J.; Gillevet, P.M.; Pohlman, J.W.; Sikaroodi, M.; Greinart, J.; Coffin, R.B. (2011). Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand. FEMS Microbiol. Ecol. 77(3): 518-532. dx.doi.org/10.1111/j.1574-6941.2011.01133.x
In: FEMS Microbiology Ecology. Federation of European Microbiological Societies: Amsterdam. ISSN 0168-6496, more
Peer reviewed article  

Available in Authors 

Keyword
Author keywords
    bacteria; AOM; marine sediment; methane; sulfate; 454-pyrosequencing

Authors  Top 
  • Hamdan, L.J.
  • Gillevet, P.M.
  • Pohlman, J.W.
  • Sikaroodi, M.
  • Greinart, J., more
  • Coffin, R.B.

Abstract
    Sediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge. Gas-charged and organic-rich sediments further landward had the highest overall diversity. Surface sediments, with the exception of those from the basin, were dominated by Rhodobacterales sequences associated with organic matter deposition. Taxa related to the Desulfosarcina/Desulfococcus and the JS1 candidates were highly abundant at the sulfate-methane transition zone (SMTZ) at three sites. To determine how community structure was influenced by terrestrial, pelagic and in situ substrates, sequence data were statistically analyzed against geochemical data (e.g. sulfate, chloride, nitrogen, phosphorous, methane, bulk inorganic and organic carbon pools) using the Biota-Environmental matching procedure. Landward of the ridge, sulfate was among the most significant structuring factors. Seaward of the ridge, silica and ammonium were important structuring factors. Regardless of the transect location, methane was the principal structuring factor on SMTZ communities.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors