IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Morphodynamic processes of the Elbe River estuary, Germany: the Coriolis effect, tidal asymmetry and human dredging
Li, M.; Ge, J.; Kappenberg, J.; Much, D.; Ohle, N.; Chen, Z. (2014). Morphodynamic processes of the Elbe River estuary, Germany: the Coriolis effect, tidal asymmetry and human dredging. Front. Earth Sci. (Print) 8(2): 181-189. hdl.handle.net/10.1007/s11707-013-0418-3
In: Frontiers of Earth Science. Springer: Beijing. ISSN 2095-0195, more
Peer reviewed article  

Available in Authors 

Keywords
Author keywords
    Morphological evolution; Dextral forcing; DEMs

Project Top | Authors 
  • Innovative coastal technologies for safer European coasts in a changing climate, more

Authors  Top 
  • Li, M.
  • Ge, J.
  • Kappenberg, J.
  • Much, D.
  • Ohle, N.
  • Chen, Z.

Abstract
    The Digital Elevation Model (DEM) based on the historical sea-charts and on-site hydrological records were used to examine the morphological change of the Elbe River estuary. The results show that siltation predominated in the tidal flat in the northern estuary, with a net siltation rate of 1.8 cm·a-1 during 1927–2006. In contrast, a continuous erosion prevailed in the main river channel, south of the estuary, with a net erosion rate of 2.5 cm·a-1 in the same time. In addition, a seaward shift of the estuarine island has happened with the old island coalescing to the northern tidal flat and new one emerging through siltation process. The tidal asymmetry via ebbing flow (maximum at 140 cm·s-1, and average at 76 cm·s-1) prevailed in the tidal flat, meaning continuous aggradation northwestward, while flooding flow (maximum at 100 cm ·s-1, and average at 67 cm·s-1) dominated in the main river channel with deepening thaweg at south, showing a landward sedimentation via the tidal pumping processes. This dextral extension of the estuarine morphology is due to the Coriolis force, leading to the inconsistent directions of in-out flows, which enables to facilitate the estuarine siltation. Human dredging prevailing in the estuary has dramatically altered the nature of the silted river channel to erosional since the last century. This is characterized by a net erosion rate of 3.2 cm·a-1 derived from the DEMs mapping, but only partially accounting for the dredging amount of 1994–2006, when the total dredging volume was 67 × 106 m3, equal to 5.9 cm·a-1.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors