IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change
Hinder, S.L.; Gravenor, M.B.; Edwards, M.; Ostle, C.; Bodger, O.; Lee, P.L.M.; Walne, A.W.; Hays, G.C. (2014). Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Glob. Chang. Biol. 20(1): 140-146.
In: Global Change Biology. Blackwell Publishers: Oxford. ISSN 1354-1013, more
Peer reviewed article  

Available in  Authors 

Author keywords
    climate change; long-term changes; top down control; bottom up control; NAO ; sea surface temperature; copepods; Mesozooplankton; westerly wind

Authors  Top 
  • Hinder, S.L.
  • Gravenor, M.B.
  • Edwards, M.
  • Ostle, C.
  • Bodger, O.
  • Lee, P.L.M.
  • Walne, A.W.
  • Hays, G.C.

    Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50-year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold-water species, and C. helgolandicus, a warm-water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors