IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Extraordinary color vision
Land, M.F.; Osorio, D. (2014). Extraordinary color vision. Science (Wash.) 343(6169): 381-382. dx.doi.org/10.1126/science.1249614
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Land, M.F.
  • Osorio, D.

Abstract
    How do animals see color? We may never know how another animal experiences red or blue, but we do know that sensitivity to ultraviolet light allows bees to see patterns on flowers where we see plain yellow or white. In fact, bee and human color vision are much alike. Both have three spectral types of photoreceptor whose signals are compared by neural "opponent" mechanisms, which are sensitive to the relative amounts of light at different wavelengths, allowing the animal to distinguish the spectrum of a light source from its brightness. Thomas Young recognized in 1802 that having multiple receptors each with a different spectral sensitivity at each point in the image is essential for color vision, but inevitably impairs spatial resolution. He proposed three spectral receptors as the likely compromise. In fact, theory predicts that two to four receptor types are optimal for discriminating the spectra of natural materials and maximizing the number of objects that could be distinguished by color. The eyes of many animals seem to follow these principles, with a retina containing two to four spectral receptors combined with a neural mechanism to compare the responses of different receptor types (the color opponent process). It is therefore fascinating to find an animal that sees color in a fundamentally different way, as reported by Thoen, H.H.; How, M.J.; Chiou, T.-H.; Marshall, J. (2014). A different form of color vision in Mantis Shrimp. Science (Wash.) 343(6169): 411-413.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors