IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

A common cellular basis for muscle regeneration in arthropods and vertebrates
Konstantinides, N.; Averof, M. (2014). A common cellular basis for muscle regeneration in arthropods and vertebrates. Science (Wash.) 343(6172): 788-791.
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Konstantinides, N.
  • Averof, M.

    Many animals are able to regenerate amputated or damaged body parts, but it is unclear whether different taxa rely on similar strategies. Planarians and vertebrates use different strategies, based on pluripotent versus committed progenitor cells, respectively, to replace missing tissues. In most animals, however, we lack the experimental tools needed to determine the origin of regenerated tissues. Here, we present a genetically tractable model for limb regeneration, the crustacean Parhyale hawaiensis. We demonstrate that regeneration in Parhyale involves lineage-committed progenitors, as in vertebrates. We discover Pax3/7-expressing muscle satellite cells, previously identified only in chordates, and show that these cells are a source of regenerating muscle in Parhyale. These similarities point to a common cellular basis of regeneration, dating back to the common ancestors of bilaterians.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors