IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism
Zetsche, E.; Bulling, M.T.; Witte, U. (2012). Permeability of intertidal sandflats: impact of temporal variability on sediment metabolism. Cont. Shelf Res. 42: 41-50.
In: Continental Shelf Research. Pergamon Press: Oxford; New York. ISSN 0278-4343, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Tidal flat; Sand; Sediment permeability; Sediment oxygen consumption;Clogging; Scotland

Authors  Top 
  • Zetsche, E., more
  • Bulling, M.T.
  • Witte, U.

    The effects of sediment permeability on sediment oxygen consumption (SOC) in an intertidal permeable sandflat were studied over a 1-year period. Our study demonstrates that temporal variation in sediment metabolism was not only driven by temperature, but also changes in sediment permeability and total carbon content over time. High SOC rates in the summer months (seasonal mean 36.5 mmol m-2 d-1) could be attributed to high temperatures affecting metabolic processes, the rapid turnover of labile organic material and the presence of large amounts of microphytobenthos and their exudates in interstitial pore spaces. The resultant clogging of pores lowered sediment permeabilities and led to the observation of increasing SOC rates at decreasing permeabilities. Despite higher permeabilities, oxygen consumption rates in winter (seasonal mean 17.3 mmol m-2 d-1) were less than half those measured in the summer, reflecting the presence of more persistent refractory material and lower temperatures. During the winter, a major storm event reworked the sediment and significantly changed the permeability, affecting SOC rates. As sediment permeability rose by ~25%, SOC rates were increased by ~35% in the month after the event compared to the previous month. Our results show that temporal variation, not only in temperature and carbon content, but also in sediment permeability, affects sediment metabolism and that resuspension and storm events are necessary to unclog systems and maintain high remineralisation rates in organically poor permeable sands.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors