IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Chemical contamination along the Mediterranean French coast using Posidonia oceanica (L.) Delile above-ground tissues: a multiple trace element study
Luy, N.; Gobert, S.; Sartoretto, S.; Biondo, R.; Bouquegneau, J.-M.; Richir, J. (2012). Chemical contamination along the Mediterranean French coast using Posidonia oceanica (L.) Delile above-ground tissues: a multiple trace element study. Ecol. Indic. 18: 269-277. dx.doi.org/10.1016/j.ecolind.2011.11.005
In: Ecological Indicators. Elsevier: Shannon. ISSN 1470-160X, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Open Repository 279318 [ OMA ]

Keywords
    Posidonia oceanica (Linnaeus) Delile, 1813 [WoRMS]; Marine
Author keywords
    Trace element; Seagrass; Posidonia oceanica; Mediterranean; Pollution;ICP-MS

Authors  Top 
  • Luy, N., more
  • Gobert, S., more
  • Sartoretto, S.
  • Biondo, R., more
  • Bouquegneau, J.-M., more
  • Richir, J., more

Abstract
    Levels of Be, Al, V, Mn, Co, As, Se, Mo, Ag, Sn, Sb, Bi as well as of Cr, Fe, Ni, Cu, Zn, Cd and Pb in Posidonia oceanica (L.) Delile from the Mediterranean French coast were analysed using DRC ICP-MS. The first twelve elements have not been well studied and can be considered to be potential pollutants as a result of potentially increased levels resulting from anthropogenic activities. Spatial variation and/or compartmentalization were found for all trace elements. Except for Al, Cr, Fe, Cu and Ag, most trace elements were preferentially accumulated in photosynthetic tissues, suggesting uptake from the water column. Moreover, for Be, V. Mn, Co, Ni, As, Mo, Sb, Sn and Pb, adult leaves had higher levels than intermediate leaves, suggesting low kinetics of accumulation. Levels in the third intermediate leaf were representative of the average levels of the integral shoot, and thus can be used alone in chemical biomonitoring. For most of the twelve little-studied trace elements, the background levels of the northwestern Mediterranean Sea can be measured, and their spatial variation can be related to anthropogenic activities. Levels of the seven widely studied trace elements seem to decrease or stabilize over time, probably due to their reduced anthropogenic use. These observations show that P. oceanica is a sensitive bioindicator for the monitoring of chemical contamination of a large number of trace elements.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors